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It is shown that the NMR reciprocity theorem is a variant of a  diate results can be reformulated as a relation between
problem considered by Lorentz in 1895. This formulation is quite  g|ectric fields of two oscillating dipoles. Let one dipole
general and applies to electric-dipole-based as well as coil-based or p.cos(wt) be situated in a poirR, and anothep,cos(t) in a
resonator-based magnetic resonance probes. The reasoning is re- point R,. The medium need not be homogeneous, but h
lated to, but different from, the proof of the reciprocity theorem everywhere linear and isotropic relatioBs = ¢E andB =

for radiofrequency networks and for transmit/receive antenna sys- L .
tems in telecommunications. The signal-to-noise ratio of the NMR fI'LPTénLet the electric fields created by these dipoles=he(r).

experiment is also discussed in very general terms. © 2001 Academic

Press

P1* Ex(Ry) = p2- Ei(Ry). [1]

1. INTRODUCTION For the NMR application, we compare the electromagne

fields of an electric dipole (representing the transmitter as

A principle of reciprocity for vibrating systems has beegource of rf magnetic field) and a magnetic dipole (creating

extensively discussed by Rayleigh (see, ed.ahd an 1873 voltage at the position of the preamplifier). We will find the
paper cited therein). Most of his examples are mechanical, ts@€iprocity relation in a form resembling, - E;(R,) = m, -

one is about a system of wires and condensers in the preseRdéRz). We will mention briefly the relation between the NMR

of electromotive forces. A more general electromagnetic re¢pciprocity theorem and the reciprocity of rf networks or tele

procity relation has been given by Loren®) @nd by Carson communication transmission/reception systems. In the fir

(3). Their work in turn has led to the reciprocity theorems fogections of this paper a general treatment is given of the ra

radiofrequency (rf) networks and for antenna systems.  Of signal power to noise power in the NMR spectrum.
The reciprocity theorem in NMR states that, if a given NMR
probe creates a large rf magnetic field in the pditin a 2. MODEL

sample, then it has also a large sensitivity to the nuclear
magnetization irR (4). Typical proofs 4, 5 assume that the The probe, or resonator, is a spatial structure, a cert:
“receiving” element is a loss-free coil, and apply the integraiolume of which contains the sample, and which has sorr
form of Faraday’s induction law to the windings of the coil; fowwhere an rf connector to the outside world. The part of tt
a somewhat more general approach €@)( It is the purpose probe closest to the sample is made of a good conductor, :
of this note to show that the reciprocity theorem holds for artjie coupling between the nuclear magnetism and the spectre
“single-connector” NMR probe (excluding crossed-coigter occurs through currents induced on this conductor. Part:
probes, which have separate connectors for transmission #mel probe that are further away (tuning capacitor, matchi
detection, or MRI methods that use the whole-body coil faretworks, connector) do not couple directly to the sample, a
excitation and a local coil for detection). This is of some formatill be considered point-like, lossless, linear, and reciproc
interest, because in certain applications of localized MRI tloércuits that are not essential for the reasoning. Losses in |
“antenna” is an electric dipole], rather than a coil. The proof sample are modeled as pure ohmic losses in a poorly condt
is valid when the rf magnetic field is inhomogeneous in aning material with a possibly high dielectric constant, as appr
plitude and orientation, and includes radiation and retardatipriate, e.g., for aqueous solutions.
effects. Most probes manifestly use the same electromagne
The present proof of the reciprocity theorem is based on ttrmode” (configuration of electric and magnetic fields) fo
reasoning in a 1895 paper by Loren®).(One of his interme- receiving and for transmitting. This is, e.g., clear when tt
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main coupling element between the connector and the nuclétarep, is an electric dipolemn, a magnetic dipolej(r) a Dirac
magnetization is a coil, and the windings of the coil are mudtelta functionX a unit vector, the “connector” is in the origin,
closer to the sample than any other conductors. There israd the magnetic dipole is iR. The phases in Eq. [2] and Eqg.
rather subtle difference between the transmit and recei/d are with respect to some “master oscillator” (apdwill
modes of a quadrature coi®), which will show up in our turn out to be unimportant).
equations. We consider Maxwell's equations
In receiver mode, the fields are not derived directly from the
rotating magnetic dipoles, but rather from the currents induced 9
in the conductors by these dipoles: the boundary conditions VXH=j+ T3 [6]
imposed by the existence of the probe are very different from
free space. In transmitter mode of course this idea of currents B
as source of the fields is much more direct. VXE=- ot [7]
We consider two situations. In the first, a point-like trans-
miFter_is hook(_ed up to the_ connector, a_nd in the second,; &4 \write the constitutive equations in the form
point-like receiver. Transmitter and receiver are modeled as
one parallel-plate capacitor. In the transmitting case we sup-

pose that the rf source is an oscillating dipole mompnt H = (B/po) — M (8]
between the capacitor plates, and consider the magnetic field D=€c¢E+P [9]
that it creates at some poift in the sample volume. In the o

receiving case, the source is a rotating magnetic momesut j=]"+ ok [10]

that pointR and we look for the electric field that it creates

between the capacitor plates. The transformations from theProbe and sample are considered to have a relative per:
linearly oscillating dipole into a rotating magnetic field, anebility n, = 1. The conductivityo and permittivity e are
from the rotating magnetization into a linearly polarized eleenaterial properties (of the sample) that may be different
tric field, will be covered by the equations developed herdifferent parts of the volume of interest. Losses are suppose
(One of the mechanical examples given by Rayleighg the be ohmic € is real). As is usual in this type of problems, the
coupling between a linear and an angular displacement.) treatment is slightly different depending on whether we mal
the approximation of a perfect (i.e., lossless) conductor for t
probe or not. In the first case, the current density on the prg

3. MAXWELL'S EQUATIONS {19 obeys at all times

A given oscillating electric polarizatioR(r, t) is the rf field p—
source in transmitting mode, and a rotating magnetizafon J'"P-E=0. [11]
t) is the source in receiving mode. Given these sources for the
fields, we consider Maxwell's equations, without referring to b the second case we séf = 0 and introduce instead an
specific structure for the probe. It will be convenient to think ciidditional probe conductivity”. However, we will not write
the “connector” as the hookup point of a tuned and match#te index () explicitly in the following, since the probe and
probe (not just a coil) that will be connected through a lossleti¥e sample losses clearly can be treated on equal footing.
transmission line and duplexer to an actual transmitter andThe two setd, r of Eq. [6] and Eq. [7] become
receiver system. From the model we have in transmitter mode

(indext), v . dE, 9P,
X Hy=]; +O’Et+€H+H [12]
Pi(r, t) = pd(r)cogwt + ¢ (2] aH,
VXE =—uwy— 13
My(r, t) = 0, [3] AT [13]
and in receiver mode (indey, and
» IE,
M,(r, t) = m8(r — R)(X sin(wt + ¢,) VXH ="+ 0E +e Tt [14]
-y COS((x)t + (Pr)) [4] (:)Hr (:)Mr

P.(r, 1) = 0. [5] VXEB = —po 50— Mo [15]
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The general form of a time-harmonic field is appear in Eqg. [10]), where the integrand on the left-hand si
of Eq. [21] vanishes. If there is no screen, as in inside-o
F(r, t) = Fu(r)cod wt) + F(r)sin(wt) [16] NMR (10), then take the volume spherical and large enou

that on its surface both the transmitter- and the receiver-mc
which includes the cases of linear and circular polarization. THE!JS behave as TEM waves arising from the origin. Then t
four equations [12] to [15] now become eight equations: one &@ynting vectors, X H, andE, X H, both point along the
for the cospt) time dependence, and another for theaip(tis Normal to the surface and
usual to bring this out by introducing complex vectors (phasors)

that for clarity we give the notatioR and that are defined by (E, X Hy-no (E X (E Xn))-n
= (E -n)(E-n) - E - E [22]
F(r, t) = RgF(r)exp(—iwt)) [17]
F(r) = Fo(r) + iF(r). [18] which is symmetrical in the indicesandr, and therefore the

integrand on the left-hand side of Eq. [21] is zero also in this ca:

The two equations corresponding, e.g., to Eq. [14] can then beUsmg the definitions of® andM we obtain

written as a single complex equation: )
(Er(O! t) : pt)SIH(a)t + QDt) + mrBt(Rn t)

VX H, =|P+ oE, — iweE,. [19] X (X sin(wt + ¢;) — ¥ codwt + ¢,))
4. RECIPROCITY = 1J D V9B E .9D:
o roat bt
Taking the scalar product of both sides of Eq. [12] with volume
of Eq. [13] with H,, of Eq. [14] with —E,, of Eq. [15] with dB; aH,
—H,, and adding, we obtain —H T B, at) dv.
V- (E;X H, — E X Hy Inserting the form of Eq. [16] it is found that the integrant
ap M 9E 9D in the second member is independent of time. Therefore t
t r t r . - . -
=E,- T B, - T D, - ot E,- ot tlme-_dependent parts _of the first member must vanish, leavi
us with two equations in terms of the scalar products Qfand
9B, oH, E, s with p,, the scalar products @&, . and B, with m;X and
—He B [20] m,§, and the sine and cosine functions of the phase angles

ande,. It is easily verified that 8,(R, t) rotating in the same

The terms containing the sample lossend possibly probe direction asn,(R, ) gives no t|me—d(_apen_dent partin t_he sc_ale
goductm- B and therefore results in a linearly polarized fiel

losseso”) cancel; if the probe is taken as lossless, the terrﬁ 0.1 of litude. We will back to this lat
containing the probe currents are zero because of Eq. [11]. (0, 1) of zero amplitude. We Wil come back 1o this 1ater.
The general result can be obtained in a convenient comp

Now integrate Eq. [20] over a volume that contains th m using phasor notation. Write the phasor analogs of E
igi d all points of th le, and th tor identi - ' ; .
ongin and afl points ot the sample, and use the vector iden IFZ] to Eqg. [15], similar to Eq. [19], multiply with the phasors

E.,H,, —E,, and—E,, and add the four resulting equations tt

% (E % H, — E,x H.) - ndS obtain the analog of Eq. [20]:
r t Bt r)
surface

V-(E; X H, — E, X Hy

= j V- (Er X Ht _ El X Hr)dV, [21] = _iw(Er : pté(r) + Bt : mrS(r - R)), [24]
volume

where
wheren is a unit vector normal to the surface eleme® d ;
= pexpl — i 25
pointing outward from the closed surface. P = peExpl — ¢y [25]
According to the experimental situation, we should make m,(R) = i(X + iy)m(R)exp(—i¢.(R)). [26]

two different choices for the closed surface in the integration.
If the probe is closed by a metallic screen, we take the surfatlkee volume integral of the first member can be shown to |
of integration just outside the screen (the losses in the scremmo using the reasoning of Eq. [21] and Eqg. [22]. Performir
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the volume integral of the second member, we obtain tipdates of a parallel-plate capacitor, and is linearly polarize
general form of the NMR reciprocity theorem as The direction of polarization can be taken algmng

E/(0) - pr = —B(R) - m((R). [27] E.(0) = (pd[p)|E(R)[exp(—iye(R)), [33]

The B(R) follow the phase angle, of p,. Therefore these where we writeE,(R) to emphasize that the sigra] is due to
phases cancel, ang, can be set to zero in the following.  a magnetic moment (a voxel) situatedRn Given the expres-
The source of excitatiop, is linearly polarized, and there sions forB(R) in Eq. [28] and form.(R) in Eg. [26], the
fore the simplest case is whéh is linearly polarized as well, values ofE,(R) and{e(R) can be found from the reciprocity

so that (index () for linear polarization) theorem:
B{'(r, 1) = By(r)cogwt + ys5(r)) pE!(R) = m(R)B(R)
BI(R) = 2|B(R)|exp(—ipg(R)((X + i§)exp(—ia(R)) PE'(R) = 2yg(R) — /2. [34]
+ (% — iy)explia(R))) [28]  Note that the angle:(R) does not appear.

. _ There is a subtlety in the treatment of a circularly polarize
where the two terms in the last equation represent two Opp@s(R, t). If just the term ink + iy in Eq. [31] is retained as

ing rotating fields and such, the resulting value @& is zero, as already mentionec
in the discussion below Eq. [23]. This corresponds to tt
coda(R)) = X+ B(R)/|B(R)| experimental fact that a quadrature coil is not a true “singl

connector” device: the correct hookup is slightly different i
transmit and receive modes, effectively exchangingklaad

y. If this change is not introduced, the detected signal is inde

The time-averaged (indicated by the overbar) energy density;gro ). Incorporating this exchange into Eq. [31], we obtai
the rf magnetic field is

sin(a(R)) = ¥+ B(R)/[B(R)|. [29]

PEC(R) = 2 m(R)B(R)
YE(R) = 2¢p(R) — 7/ 2, [35]

Bi'(r, 1) - H{"(r, ©) = 3BE(r)/ po. [30]

A circularly polarizedB(r, t) can be written as o o
where, at constant energy density in the magnetic field, t

= . signal has increased by a factof2, as expectedd).
Bi(r, ) =3 V2 [B(N)[(X codwt + ys(r)) It is seen that retardation effects, described by the an
+ ¥ sin(wt + ¢(r))) Ye(R), can lead to destructive interference between Ehe
_ coming from voxels at differenR. In many cases the rf
B{?(R) = 3 |2 [B(R)|(X + iy)exp(—ips(R)), [31] magnetic field configuration will behave similar to a cavit
mode (standing, rather than travelling waves) where, ap
where the factok V2 has been introduced so that the energyom switching effects, retardation is unimportant. This will b
density is; Bf(r)/i,, the same as in the linearly polarized field@ssumed in the following.

The expression foBY(r, t) takes into account possible A simpler form can be obtained from Eq. [34] by writing the
inhomogeneities in amplitudB,(r), in orientation in thexy dipole moment ap. = q.d, with g, a charge and the distance
plane a(r), and in retardations(r). After the rf pulse, the between the plates of the capacitor in the modek; g« with
rotating nuclear magnetization will be inhomogeneous in arh- the current in the wires between the connector and t
plitude and orientation as well. However, at each point tie&pacitor;E, = Adé,/d with A¢, the potential difference
magnetization is in quadrature with the local phase of the pulgetween the plates; anth = MV, with V, the sample
(X + i9)exp(—ia(R) — iye(R)) so thate,(R) in Eq. [4] volume. Then

becomes
Ag, . wB; 36
¢(R) = a(R) + Ya(R) — /2 [32] MoV, iy 136]
(for a circularly polarized excitation, set(R) = 0). Now i.cos(wt + ¢,) can simply be considered the curren

In the model,E,(0) is the field that appears between thénjected into the connector during transmission, ar
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A¢,cost + ¢,) the voltage appearing on the connectarransmission line. The useful signal power can therefore
during reception. calculated from the signal power dissipated in the probe.

It is perhaps useful to stress that the reciprocity theoremThe mechanism of dissipation is a coupling between tl
takes care of all losses: by radiation (for inside-out NMR), byptating nuclear magnetic momemtand the quadrature com-
a finite quality factor of the coil, and by ohmic heating in th@onent (with respect ton) of the field H, set up by thg,
sample. So a givep will create a smalleB,(R) when any of induced by that same magnetic moment. In a loss-free pro
these losses becomes more important; and the electric fild component oB,(t) that rotates at-w is parallel toM (t),
E.(0) diminishes by the same factor. The proof starts from ttzend does not reorient that magnetization. According to Len:
complete Maxwell's equations, and therefore radiation ataw, it compensates exactly the changing flux duevidt):
retardation effects are included, insofar as the phenomena &n = wo(H:,; + M) = 0.
be described by monochromatic fields of the form of Eq. [16]. When losses are taken into account, there will appear

There is an interesting relation between this derivation of tleeirrent density in phase with the electric field, generating
NMR reciprocity theorem and the reciprocity theorem in rH (t) in quadrature withM,(t). Denoting this component by
network theory. The latter says that the impedance matrix fel; |
ann-port network is symmetric. Certain sourcd4 (12 men-
tion a theorem due to Lorentz as the basis for the demonstration B H, =~ uo(Hiy+ M, +H, ) (H+ H, )
of network reciprocity. That theorem is Eq. [24], for a region

— 2
of space that does not contain sources of the field, = polHr[* [39]

The torque exerted bif, , drives the magnetization back to
the static fieldB,. The magnetic energgn - B, so gained is
dissipated in the probe losses and in the detector.

where now the indices, b indicate two different field con-  The losses in the probe and in the sample can be charac
figurations that can exist inside the network. Imagine thezed by the quality facto@ of the “resonator mode” with the
network as some arrangement of microwave cavities, and gsmple in place. Quite generally, the inductaha#f the probe
ports as waveguide flanges. The volume integral of Eq. [3i8] defined as

taken over the network has a bounding surface that is partly

metallic, partly the waveguide apertures. The surface integral

will be zero over the metallic parts. The network reciprocity iLiz= f B(r, t) - Hy(r, t)dV, [40]
theorem is then derived using space

V'(EaXHb_EbX Ha):O, [37]

where the overbar indicates a time average over a cycle,;an
> Jf (Ex X H, — E, X Hy) - ndS= 0 [38] isthe amplitude of a sinusoidal current input into the conne
ports J Japerture tor. The integral is taken over the space occupied by the prc

(including matching networks, etc., but excluding the transm

as well as the relation between the fields and the impedance%géfltself) and the sample. Similarly, the equivalent loss res

the ports. For details, see, e.dL?). ceR of the probe with sample is

5. SIGNAL POWER IRi2= f a(DE(r, t) - E(r, HdV. [41]

space

The reciprocity theorem is valid for idealized, loss-free
structures as well as for actual probes. A really Ioss—freleh
structure should be coupled to a spectrometer with infinilte
input and output impedances, but any practical probe can B
coupled to standard transmission lines by the use of suitame
impedance transformation networks. It is usually possible to JE—
construct such networks without appreciable losses of their Q= ® JsampeB(r, 1) - H(r, )dV _@ [ sampie B*dV
own. The probe becomes equivalent to an idealized signal S space (N E(r, t) - E(r, t)dV 2P P
generator with an internal impedance equal to the characteristic [42]
impedance of the transmission line. Part of the signal is dissi-
pated in the internal impedance3( 14, and an equal amountwhere all losses have been supposed in the sample and pt
of signal power is available at the load on the other end of tlaad P is the corresponding power. In principle, we mus

e value ofQ is defined a®) = wL/R. The filling factorm
by definition the fraction of the magnetic field energy store
he sample volume,
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distinguish the receiver mode)Q), and the transmitter mode 1(Ad)? 1 wB.\ 2
(nQ)., but we will see below that the reciprocity theorem 2p@ = M ( ‘) =
implies that the two are equal. 2R 4R

In an impedance-matched system consisting of a power [46]
source (the probe with sample in place), a lossless transmission . .
line, and a detector (the preamplifier), the power dissipated | lle, for a homogeneous (and linearly polarizéd)we have
the detectoP” equals that dissipated in the souR®, from Eq. [42] and Eq. [36]

Mo
4Vs (UQ)tQ’M z

I

Vo (0B\?  V, (A2
(P — p(d (» - il I
P mPEEP 1= or (%) = or <Movs) S
d
= dt f M. (r, t) - BodV Comparison of Eq. [46] and Eq. [44] shows that the reciproci
sample theorem may also be stated as
=y j (M,(r, t) X B,(r, t)) - B,dV (mQ)r = (MQ)+. [48]
sample

Substitution of Eq. [45] and Eq. [48] into Eq. [44] yields the
result in Eq. [17] of Haeberlen’s summer school not&s (
=30 f M,B.dV, [43]
sample 6. SIGNAL-TO-NOISE RATIO

. . . . In a matched system of characteristic impedaRadabée rms
where the facto$ in the last member is for a linearly polanzednoise voltage aenerated by the source in a frequency rar
B.(r, t); for a circularly polarized field it i$ \/2; compare Eq. 9¢ 9 y q y

— H 1/2 H
[28] and Eq. [31]. (The factdris missing from Eq. [10] in15), Av = Awl2m is 2(KTRA») = Half of th!s voltage appears
. . . across the detector and therefore the noise power coming fr
and as a consequence the signal-to-noise ratio in that pap

is . . :
6 dB too high.) e[¥1e probe, and available after a unity-gain detector system w

If the amplitudesM, andB, are reasonably uniform over thean ideal low-pass filter of bandwidle < «/Q, is
sample volumé/, then, according to Eqg. [42] fomQ), and
Eqg. [43], the signal power arriving at the detector immediately PO(t) = kT Aj [49]
after am/2 pulse M, = M) is (15) 2

w3 Xo\ 2 The signal-to-noise power ratio varies with temperaturé ds
PO =_— (nQ)r(O> V, if it can be assumed that the noise source is at the sa
81ko Y temperature as the sample, aQds independent of tempera-
ture. (Actually, the basic derivation of Eq. [49] involves equi
librium thermodynamics: strictly speaking, noise source at
detector must be at the same temperature). From Eq. [44], |
where x, is the nuclear magnetic susceptibilityit = [47], and Eq. [49] we find the same signal-to-noise ratio ¢
XoBoVd/ o is the total nuclear magnetic moment of the samplé&om Eq. [4] and Eq. [6] in4). It follows from Eq. [44] and Eq.
and.; = 3 xow(nQ) is the inverse time constant for decay of49] that Eq. [38] of (7), which has been derived for small flip
the signal through radiation damping6j. For a circularly angles, is in fact valid for arbitrary angles.
polarizedB, (r, t), the right-hand side must be multiplied by 2. The variation ofP®/P™ with field depends on the factor
We can also calculate® from the definition of §Q), for (nQ)w®. If the sample is an aqueous solution, and currer

~ LMByT (44

a homogeneous rf field associated with the electric fields created according to Eq. [
dominate the quality factor, the® = o '. This effect is

V., [wB)? usually important in MRI 18). At a given field, temperature,

(nQ), = W( i ) [45] sample or voxel volume, and (if in the time domain) banc

width, the signal-to-noise ratio camly be improved by opti-
mizing the parametenQ.

and the reciprocity theorem in the form of Eq. [36]. In a For the case of MRI, the index “sample” on the integral i
matched system, the voltagep, appears across a resistanc&q. [42] should be changed to “voxel” and the index “space” 1
2R. Then “body,” since now the losses will be through(body). An
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algorithm, based on this criterion fofQ),, to determine the =(n)n(t + 7))exp(—71/T%)
“ultimate signal-to-noise ratio” for a given voxel inside a lossy

elliptical cylinder has been proposed it9}. As a rule, not all i fm
voxels can be optimized simultaneously by one and the same x tm exp(—2t/Tz)dt. [54]
coil design. 0

Of course, as the time after then/2 pulse increases, the
signal power decreases. Assume for simplicity a simple expdfter Fourier trz(an?sformatlon the noise power in a frequen
nential decay with time constait;/ 2 interval Aw is P,"(0)Aw with

PW(t) = PY(0)exp(—2t/T% 50 KT 1 [t
® (Oexut 2 [50] PO (w) = mf exp(—2t/T%)dt
m 0

with P{?(0) given by Eq. [44] or Eq. [46]. If the signal trace is

recorded during an interva), the average signal powet? is X 7 Yarctafw T% — wT%)
+ arctaffw 75 + oT%)). [55]
P@ = P2(O) 2t/T%)d 51
A exp( UTZdt. [51] For w.T% > 1 and near the center of the spectrum, whe
0

oT% < 1, the noise power is independent of frequency. Tt

signal-to-noise power ratio becomes
After Fourier transformation approximately two-thirds of this

power appears in a frequency window covering the half-width T5P ()
of the absorption lineshaptw = 2/T%. Inside this window (SIN), = kT
the average signal-to-noise power ratio is

(1+ exp(—2t,/T%).  [56]

Pa— If the lifetime of the free induction decay signal is deter
TT5P; . .. . _
e [52] mined by radiation damping, theéR; = 7., and a lowerQ
3kT will give the same signal-to-noise ratio, because of Eq. [44
Although it is not of much practical interest, the ultimat
In high-resolution liquids NMR or in MRI the lineshape usu{S/N), in this limit of very highnQ is seen to be
ally does not convey interesting information, and it is desirable
to apply a digital filter to enhance the signal-to-noise ratio. The 7 MB,
filter should conserve the value 8% (0), since this is preo (SIN) " = 24 KT [57]
portional to the number of nuclei, but it may alter the effective
" X . X X
?’na'rlr’]il?iglyzi'ngiﬂi’?f&;hfh;zfgz';f'tﬁg”;’gxgg)‘othstDcc;?gsr'gﬁnd the signal-to-noise ratio in the half-width of the line in th
f(t) with exp(—t/T%), 0 < t < t,, creating a “filter output” absorption spectrum is proportional Bo/T.
fo(t). This halves the effective value %, in the expression for
the signal power, Eq. [50]. To see the effect on the noise,

COI.‘ISIdeI’ the gutocorrelatldﬁo(r) Of.ff’(t) when the 'nF’“t IS | thank Carlo Beenakker for having located the original Lorentz paper a
noisen(t), white from —w. to w,, with an autocorrelation  Hans Brom for clarifying discussions.
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