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problem considered by Lorentz in 1895. This formulation is quite
general and applies to electric-dipole-based as well as coil-based or
resonator-based magnetic resonance probes. The reasoning is re-
lated to, but different from, the proof of the reciprocity theorem
for radiofrequency networks and for transmit/receive antenna sys-
tems in telecommunications. The signal-to-noise ratio of the NMR
experiment is also discussed in very general terms. © 2001 Academic

ress

1. INTRODUCTION

A principle of reciprocity for vibrating systems has be
extensively discussed by Rayleigh (see, e.g., (1) and an 187
paper cited therein). Most of his examples are mechanica
one is about a system of wires and condensers in the pre
of electromotive forces. A more general electromagnetic
procity relation has been given by Lorentz (2) and by Carso
(3). Their work in turn has led to the reciprocity theorems
radiofrequency (rf) networks and for antenna systems.

The reciprocity theorem in NMR states that, if a given N
probe creates a large rf magnetic field in the pointR in a
sample, then it has also a large sensitivity to the nu
magnetization inR (4). Typical proofs (4, 5) assume that th
“receiving” element is a loss-free coil, and apply the inte
form of Faraday’s induction law to the windings of the coil;
a somewhat more general approach see (6, 7). It is the purpos
of this note to show that the reciprocity theorem holds for
“single-connector” NMR probe (excluding crossed-
probes, which have separate connectors for transmissio
detection, or MRI methods that use the whole-body coi
excitation and a local coil for detection). This is of some for
interest, because in certain applications of localized MR
“antenna” is an electric dipole (8), rather than a coil. The pro
is valid when the rf magnetic field is inhomogeneous in
plitude and orientation, and includes radiation and retard
effects.

The present proof of the reciprocity theorem is based o
reasoning in a 1895 paper by Lorentz (2). One of his interme
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electric fields of two oscillating dipoles. Let one dip
p1cos(vt) be situated in a pointR1 and anotherp2cos(vt) in a
point R2. The medium need not be homogeneous, but
everywhere linear and isotropic relationsD 5 eE and B 5
mH. Let the electric fields created by these dipoles beE1,2(r ).
Then

p1 z E2~R1! 5 p2 z E1~R2!. [1]

For the NMR application, we compare the electromagn
fields of an electric dipole (representing the transmitter
source of rf magnetic field) and a magnetic dipole (creati
voltage at the position of the preamplifier). We will find
reciprocity relation in a form resemblingp1 z E2(R1) 5 m2 z
B1(R2). We will mention briefly the relation between the NM
reciprocity theorem and the reciprocity of rf networks or t
communication transmission/reception systems. In the
sections of this paper a general treatment is given of the
of signal power to noise power in the NMR spectrum.

2. MODEL

The probe, or resonator, is a spatial structure, a ce
volume of which contains the sample, and which has so
where an rf connector to the outside world. The part of
probe closest to the sample is made of a good conducto
the coupling between the nuclear magnetism and the spec
eter occurs through currents induced on this conductor. Pa
the probe that are further away (tuning capacitor, matc
networks, connector) do not couple directly to the sample
will be considered point-like, lossless, linear, and recipr
circuits that are not essential for the reasoning. Losses i
sample are modeled as pure ohmic losses in a poorly con
ing material with a possibly high dielectric constant, as ap
priate, e.g., for aqueous solutions.

Most probes manifestly use the same electromag
“mode” (configuration of electric and magnetic fields)
receiving and for transmitting. This is, e.g., clear when
1090-7807/01 $35.00
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magnetization is a coil, and the windings of the coil are m
closer to the sample than any other conductors. There
rather subtle difference between the transmit and re
modes of a quadrature coil (9), which will show up in ou
equations.

In receiver mode, the fields are not derived directly from
rotating magnetic dipoles, but rather from the currents ind
in the conductors by these dipoles: the boundary condi
imposed by the existence of the probe are very different
free space. In transmitter mode of course this idea of cur
as source of the fields is much more direct.

We consider two situations. In the first, a point-like tra
mitter is hooked up to the connector, and in the secon
point-like receiver. Transmitter and receiver are modele
one parallel-plate capacitor. In the transmitting case we
pose that the rf source is an oscillating dipole momep
between the capacitor plates, and consider the magnetic
that it creates at some pointR in the sample volume. In th
eceiving case, the source is a rotating magnetic momenm at

that pointR and we look for the electric field that it crea
etween the capacitor plates. The transformations from

inearly oscillating dipole into a rotating magnetic field, a
rom the rotating magnetization into a linearly polarized e
ric field, will be covered by the equations developed h
One of the mechanical examples given by Rayleigh (1) is the
oupling between a linear and an angular displacement.)

3. MAXWELL’S EQUATIONS

A given oscillating electric polarizationP(r , t) is the rf field
source in transmitting mode, and a rotating magnetizationM(r ,
t) is the source in receiving mode. Given these sources fo
fields, we consider Maxwell’s equations, without referring
specific structure for the probe. It will be convenient to thin
the “connector” as the hookup point of a tuned and mat
probe (not just a coil) that will be connected through a loss
transmission line and duplexer to an actual transmitter
receiver system. From the model we have in transmitter m
(index t),

Pt~r , t! 5 ptd~r !cos~vt 1 w t! [2]

Mt~r , t! 5 0, [3]

nd in receiver mode (indexr ),

Mr~r , t! 5 mrd~r 2 R!~ x̂ sin~vt 1 w r!

2 ŷ cos~vt 1 w r!! [4]

Pr~r , t! 5 0. [5]
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delta function,x̂ a unit vector, the “connector” is in the orig
and the magnetic dipole is inR. The phases in Eq. [2] and E
4] are with respect to some “master oscillator” (andw t will
urn out to be unimportant).

We consider Maxwell’s equations

¹ 3 H 5 j 1
D

t
[6]

¹ 3 E 5 2
B

t
[7]

nd write the constitutive equations in the form

H 5 ~B/m0! 2 M [8]

D 5 eE 1 P [9]

j 5 j ~ p! 1 sE. [10]

Probe and sample are considered to have a relative p
ability m r 5 1. The conductivitys and permittivity e are
material properties (of the sample) that may be differen
different parts of the volume of interest. Losses are suppos
be ohmic (e is real). As is usual in this type of problems,
treatment is slightly different depending on whether we m
the approximation of a perfect (i.e., lossless) conductor fo
probe or not. In the first case, the current density on the p
j ( p) obeys at all times

j ~ p! z E 5 0. [11]

In the second case we setj ( p) 5 0 and introduce instead
additional probe conductivitys ( p). However, we will not write
the index (p) explicitly in the following, since the probe a
the sample losses clearly can be treated on equal footing

The two setst, r of Eq. [6] and Eq. [7] become

¹ 3 Ht 5 j t
~ p! 1 sEt 1 e

Et

t
1

Pt

t
[12]

¹ 3 Et 5 2m0

Ht

t
[13]

nd

¹ 3 Hr 5 j r
~ p! 1 sEr 1 e

Er

t
[14]

¹ 3 Er 5 2m0

Hr

t
2 m0

Mr

t
. [15]



The general form of a time-harmonic field is
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149THE RECIPROCITY THEOREM
F~r , t! 5 Fc~r !cos~vt! 1 Fs~r !sin~vt! [16]

which includes the cases of linear and circular polarization.
four equations [12] to [15] now become eight equations: on
for the cos(vt) time dependence, and another for the sin(vt). It is
usual to bring this out by introducing complex vectors (phas
that for clarity we give the notationF and that are defined by

F~r , t! 5 Re~F~r !exp~2ivt!! [17]

F~r ! 5 Fc~r ! 1 iF s~r !. [18]

he two equations corresponding, e.g., to Eq. [14] can the
ritten as a single complex equation:

¹ 3 H r 5 j r
~ p! 1 sE r 2 iveE r. [19]

4. RECIPROCITY

Taking the scalar product of both sides of Eq. [12] withEr ,
f Eq. [13] with Hr , of Eq. [14] with 2Et, of Eq. [15] with
Ht, and adding, we obtain

¹ z ~Et 3 Hr 2 Er 3 Ht!

5 Er z
Pt

t
1 Bt z

Mr

t
1 Dr z

Et

t
2 Et z

Dr

t

2 Hr z
Bt

t
1 Bt z

Hr

t
. [20]

The terms containing the sample lossess (and possibly prob
lossess ( p)) cancel; if the probe is taken as lossless, the te
containing the probe currents are zero because of Eq. [1

Now integrate Eq. [20] over a volume that contains
origin and all points of the sample, and use the vector ide

R
surface

~Er 3 Ht 2 Et 3 Hr! z ndS

5 E
volume

¹ z ~Er 3 Ht 2 Et 3 Hr!dV, [21]

here n is a unit vector normal to the surface elementS,
pointing outward from the closed surface.

According to the experimental situation, we should m
two different choices for the closed surface in the integra
If the probe is closed by a metallic screen, we take the su
of integration just outside the screen (the losses in the s
e
et

s)

be
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of Eq. [21] vanishes. If there is no screen, as in inside
NMR (10), then take the volume spherical and large eno
that on its surface both the transmitter- and the receiver-m
fields behave as TEM waves arising from the origin. Then
Poynting vectorsEt 3 Ht andEr 3 Hr both point along th
normal to the surface and

~Er 3 Ht! z n } ~Er 3 ~Et 3 n!! z n

5 ~Er z n!~Et z n! 2 Er z Et [22]

which is symmetrical in the indicest and r, and therefore th
integrand on the left-hand side of Eq. [21] is zero also in this

Using the definitions ofP andM we obtain

~Er~0, t! z pt!sin~vt 1 w t! 1 mrBt~R, t!

3 ~ x̂ sin~vt 1 w r! 2 ŷ cos~vt 1 w r!!

5
1

v E
volume

SDr z
Et

t
2 Et z

Dr

t

2 Hr z
Bt

t
1 Bt z

Hr

t DdV.

Inserting the form of Eq. [16] it is found that the integra
n the second member is independent of time. Therefor
ime-dependent parts of the first member must vanish, lea
s with two equations in terms of the scalar products ofEr ,c and
r ,s with pt, the scalar products ofBt,c andBt,s with mrx̂ and
r ŷ, and the sine and cosine functions of the phase anglw r

andw t. It is easily verified that aBt(R, t) rotating in the sam
direction asmr(R, t) gives no time-dependent part in the sc
productm z B and therefore results in a linearly polarized fi
Er(0, t) of zero amplitude. We will come back to this late

The general result can be obtained in a convenient com
form using phasor notation. Write the phasor analogs o
[12] to Eq. [15], similar to Eq. [19], multiply with the phaso
E r , H r , 2E t, and2E t, and add the four resulting equations
obtain the analog of Eq. [20]:

¹ z ~E t 3 H r 2 E r 3 H t!

5 2iv~E r z p td~r ! 1 B t z m rd~r 2 R!!, [24]

where

p t 5 ptexp~ 2 iw t! [25]

m r~R! 5 i ~ x̂ 1 iŷ!mr~R!exp~2iw r~R!!. [26]

The volume integral of the first member can be shown t
zero using the reasoning of Eq. [21] and Eq. [22]. Perform
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general form of the NMR reciprocity theorem as

E r~0! z p t 5 2B t~R! z m r~R!. [27]

he B t(R) follow the phase anglew t of p t. Therefore thes
phases cancel, andw t can be set to zero in the following.

The source of excitationpt is linearly polarized, and ther-
ore the simplest case is whenBt is linearly polarized as we
so that (index (l ) for linear polarization)

Bt
~l !~r , t! 5 Bt~r !cos~vt 1 cB~r !!

B t
~l !~R! 5 1

2 uBt~R!uexp~2icB~R!!~~ x̂ 1 iŷ!exp~2ia~R!!

1 ~ x̂ 2 iŷ!exp~ia~R!!! [28]

here the two terms in the last equation represent two op
ng rotating fields and

cos~a~R!! 5 x̂ z Bt~R!/uBt~R!u

sin~a~R!! 5 ŷ z Bt~R!/uBt~R!u. [29]

he time-averaged (indicated by the overbar) energy dens
he rf magnetic field is

Bt
~l !~r , t! z H t

~l !~r , t! 5 1
2 Bt

2~r !/m0. [30]

A circularly polarizedBt
(c)(r , t) can be written as

Bt
~c!~r , t! 5 1

2 Î2 uBt~r !u~ x̂ cos~vt 1 cB~r !!

1 ŷ sin~vt 1 cB~r !!!

B t
~c!~R! 5 1

2 Î2 uBt~R!u~ x̂ 1 iŷ!exp~2icB~R!!, [31]

where the factor12 =2 has been introduced so that the ene
density is1

2 Bt
2(r )/m 0, the same as in the linearly polarized fie

The expression forBt
(l )(r , t) takes into account possib

inhomogeneities in amplitudeBt(r ), in orientation in thexy
planea(r ), and in retardationcB(r ). After the rf pulse, th
rotating nuclear magnetization will be inhomogeneous in
plitude and orientation as well. However, at each point
magnetization is in quadrature with the local phase of the p
( x̂ 1 iŷ)exp(2ia(R) 2 icB(R)) so that w r(R) in Eq. [4]
becomes

w r~R! 5 a~R! 1 cB~R! 2 p/ 2 [32]

(for a circularly polarized excitation, seta(R) 5 0).
In the model,Er(0) is the field that appears between
s-

in

y
.

-
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The direction of polarization can be taken alongp,

E r~0! 5 ~ pt/uptu!uEr~R!uexp~2icE~R!!, [33]

where we writeEr(R) to emphasize that the signalEr is due to
a magnetic moment (a voxel) situated inR. Given the expres
ions for B t(R) in Eq. [28] and form r(R) in Eq. [26], the
alues ofEr(R) andcE(R) can be found from the reciproc

theorem:

ptEr
~l !~R! 5 mr~R! Bt~R!

c E
~l !~R! 5 2cB~R! 2 p/ 2. [34]

Note that the anglea(R) does not appear.
There is a subtlety in the treatment of a circularly polar

Bt(R, t). If just the term inx̂ 1 iŷ in Eq. [31] is retained a
such, the resulting value forEr

(c) is zero, as already mention
in the discussion below Eq. [23]. This corresponds to
experimental fact that a quadrature coil is not a true “sin
connector” device: the correct hookup is slightly differen
transmit and receive modes, effectively exchanging thex̂ and
ŷ. If this change is not introduced, the detected signal is in
zero (9). Incorporating this exchange into Eq. [31], we ob

ptEr
~c!~R! 5 Î2 mr~R! Bt~R!

c E
~c!~R! 5 2cB~R! 2 p/ 2, [35]

where, at constant energy density in the magnetic field
signal has increased by a factor=2, as expected (9).

It is seen that retardation effects, described by the a
cE(R), can lead to destructive interference between thEr

coming from voxels at differentR. In many cases the
magnetic field configuration will behave similar to a ca
mode (standing, rather than travelling waves) where,
from switching effects, retardation is unimportant. This wil
assumed in the following.

A simpler form can be obtained from Eq. [34] by writing
dipole moment aspt 5 qtd, with qt a charge andd the distanc
between the plates of the capacitor in the model;i t 5 qtv with
i t the current in the wires between the connector and
capacitor; Er 5 Df r /d with Df r the potential differenc
between the plates; andm 5 M 0Vs, with Vs the sampl
volume. Then

Df r

M0Vs
5

vBt

i t
. [36]

Now i tcos(vt 1 w t) can simply be considered the curr
injected into the connector during transmission,



Df rcos(vt 1 w r) the voltage appearing on the connector
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during reception.
It is perhaps useful to stress that the reciprocity theo

takes care of all losses: by radiation (for inside-out NMR)
a finite quality factor of the coil, and by ohmic heating in
sample. So a givenp will create a smallerBt(R) when any o
these losses becomes more important; and the electric
Er(0) diminishes by the same factor. The proof starts from
complete Maxwell’s equations, and therefore radiation
retardation effects are included, insofar as the phenomen
be described by monochromatic fields of the form of Eq. [

There is an interesting relation between this derivation o
NMR reciprocity theorem and the reciprocity theorem in
network theory. The latter says that the impedance matri
ann-port network is symmetric. Certain sources (11, 12) men-
tion a theorem due to Lorentz as the basis for the demonst
of network reciprocity. That theorem is Eq. [24], for a reg
of space that does not contain sources of the field,

¹ z ~Ea 3 Hb 2 Eb 3 Ha! 5 0, [37]

where now the indicesa, b indicate two different field con
gurations that can exist inside the network. Imagine
etwork as some arrangement of microwave cavities, an
orts as waveguide flanges. The volume integral of Eq.

aken over the network has a bounding surface that is p
etallic, partly the waveguide apertures. The surface int
ill be zero over the metallic parts. The network recipro

heorem is then derived using

O
ports

EE
aperture

~Ea 3 Hb 2 Eb 3 Ha! z ndS5 0 [38]

s well as the relation between the fields and the impedan
he ports. For details, see, e.g., (12).

5. SIGNAL POWER

The reciprocity theorem is valid for idealized, loss-f
structures as well as for actual probes. A really loss
structure should be coupled to a spectrometer with infi
input and output impedances, but any practical probe ca
coupled to standard transmission lines by the use of su
impedance transformation networks. It is usually possib
construct such networks without appreciable losses of
own. The probe becomes equivalent to an idealized s
generator with an internal impedance equal to the characte
impedance of the transmission line. Part of the signal is d
pated in the internal impedance (13, 14), and an equal amou
of signal power is available at the load on the other end o
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calculated from the signal power dissipated in the probe.
The mechanism of dissipation is a coupling between

rotating nuclear magnetic momentm and the quadrature com
ponent (with respect tom) of the field Hr set up by thej r

induced by that same magnetic moment. In a loss-free p
the component ofBr(t) that rotates at1v is parallel toMr(t),
and does not reorient that magnetization. According to Le
law, it compensates exactly the changing flux due toMr(t):
Br ,i 5 m 0(Hr ,i 1 Mr) 5 0.

When losses are taken into account, there will appe
current density in phase with the electric field, generatin
Hr(t) in quadrature withMr(t). Denoting this component b
Hr ,'

Br z Hr < m0~Hr ,i 1 Mr 1 Hr ,'! z ~Hr ,i 1 Hr ,'!

5 m0uHr ,'u 2. [39]

The torque exerted byHr ,' drives the magnetization back
the static fieldB0. The magnetic energym z B0 so gained i
dissipated in the probe losses and in the detector.

The losses in the probe and in the sample can be char
ized by the quality factorQ of the “resonator mode” with th
ample in place. Quite generally, the inductanceL of the probe
s defined as

1
2 Li t

2 5 E
space

Bt~r , t! z Ht~r , t!dV, [40]

here the overbar indicates a time average over a cycle,i t

is the amplitude of a sinusoidal current input into the con
tor. The integral is taken over the space occupied by the p
(including matching networks, etc., but excluding the trans
ter itself) and the sample. Similarly, the equivalent loss r
tanceR of the probe with sample is

1
2 Ri t

2 5 E
space

s~r !Et~r , t! z Et~r , t!dV. [41]

he value ofQ is defined asQ 5 vL/R. The filling factorh
is by definition the fraction of the magnetic field energy sto
in the sample volume,

hQ 5
v *sampleB~r , t! z H~r , t!dV

*spaces~r !E~r , t! z E~r , t!dV
5

v *sampleB2dV

2m0P
~ p! ,

[42]

where all losses have been supposed in the sample and
and P( p) is the corresponding power. In principle, we m
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(hQ) t, but we will see below that the reciprocity theor
mplies that the two are equal.

In an impedance-matched system consisting of a p
ource (the probe with sample in place), a lossless transm
ine, and a detector (the preamplifier), the power dissipat
he detectorP(d) equals that dissipated in the sourceP( p),

2P ~ p! 5 P ~d! 1 P ~ p!

5
d

dt E
sample

Mr~r , t! z B0dV

5 g E
sample

~Mr~r , t! 3 Br~r , t!! z B0dV

5 1
2 v E

sample

MrBrdV, [43]

where the factor12 in the last member is for a linearly polariz
Br(r , t); for a circularly polarized field it is12 =2; compare Eq
[28] and Eq. [31]. (The factor12 is missing from Eq. [10] in (15),

nd as a consequence the signal-to-noise ratio in that pa
dB too high.)
If the amplitudesMr andBr are reasonably uniform over t

ample volumeVs then, according to Eq. [42] for (hQ) r and
Eq. [43], the signal power arriving at the detector immedia
after ap/2 pulse (Mr 5 M 0) is (15)

Pr
~d! 5

v 3

8m0
~hQ! rSx0

g D 2

Vs

5 1
4 }B0t rad

21, [44]

where x0 is the nuclear magnetic susceptibility,} 5
x 0B0Vs/m 0 is the total nuclear magnetic moment of the sam
andtrad

21 5 1
2 x 0v(hQ) is the inverse time constant for decay

the signal through radiation damping (16). For a circularly
olarizedBr(r , t), the right-hand side must be multiplied by
We can also calculatePr

(d) from the definition of (hQ) t for
a homogeneous rf field

~hQ! t 5
Vs

m0vR SvBt

i t
D 2

[45]

nd the reciprocity theorem in the form of Eq. [36]. In
atched system, the voltageDf r appears across a resista

2R. Then
er
ion
in

r is

y

,

2Pr
~d! 5

2 r

2R
5

1

4R S}
vBt

i t
D 5

m0

4Vs
~hQ! tv} 2

[46]

while, for a homogeneous (and linearly polarized)Bt, we have
from Eq. [42] and Eq. [36]

~hQ! t 5
Vs

m0vR SvBt

i t
D 2

5
Vs

m0vR S Df r

MoVs
D 2

. [47]

omparison of Eq. [46] and Eq. [44] shows that the recipro
heorem may also be stated as

~hQ! r 5 ~hQ! t. [48]

Substitution of Eq. [45] and Eq. [48] into Eq. [44] yields
result in Eq. [17] of Haeberlen’s summer school notes (5).

6. SIGNAL-TO-NOISE RATIO

In a matched system of characteristic impedanceR the rms
oise voltage generated by the source in a frequency
n 5 Dv/2p is 2(kTRDn) 1/ 2. Half of this voltage appea

across the detector and therefore the noise power coming
the probe, and available after a unity-gain detector system
an ideal low-pass filter of bandwidthDv ! v/Q, is

P ~n!~t! 5 kT
Dv

2p
. [49]

The signal-to-noise power ratio varies with temperature asT23,
if it can be assumed that the noise source is at the
temperature as the sample, andQ is independent of temper
ure. (Actually, the basic derivation of Eq. [49] involves eq
ibrium thermodynamics: strictly speaking, noise source
etector must be at the same temperature). From Eq. [44

47], and Eq. [49] we find the same signal-to-noise ratio
rom Eq. [4] and Eq. [6] in (4). It follows from Eq. [44] and Eq
49] that Eq. [38] of (17), which has been derived for small fl
ngles, is in fact valid for arbitrary angles.
The variation ofP(d)/P(n) with field depends on the fact

(hQ)v 3. If the sample is an aqueous solution, and curr
associated with the electric fields created according to Eq
dominate the quality factor, thenQ } v21. This effect is
usually important in MRI (18). At a given field, temperatur
sample or voxel volume, and (if in the time domain) ba
width, the signal-to-noise ratio canonly be improved by opt
mizing the parameterhQ.

For the case of MRI, the index “sample” on the integra
Eq. [42] should be changed to “voxel” and the index “space
“body,” since now the losses will be throughs(body). An
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“ultimate signal-to-noise ratio” for a given voxel inside a lo
elliptical cylinder has been proposed in (19). As a rule, not a
voxels can be optimized simultaneously by one and the
coil design.

Of course, as the timet after thep/2 pulse increases, t
signal power decreases. Assume for simplicity a simple e
nential decay with time constantT*2/ 2

Pr
~d!~t! 5 Pr

~d!~0!exp~22t/T*2! [50]

with Pr
(d)(0) given by Eq. [44] or Eq. [46]. If the signal trace

recorded during an intervaltm, the average signal powerP# r
(d) is

P# r
~d! 5

Pr
~d!~0!

tm
E

0

tm

exp~22t/T*2!dt. [51]

fter Fourier transformation approximately two-thirds of t
ower appears in a frequency window covering the half-w
f the absorption lineshapeDv 5 2/T*2. Inside this window

he average signal-to-noise power ratio is

~S/N!Dv 5
2pT*2P# r

~d!

3kT
. [52]

In high-resolution liquids NMR or in MRI the lineshape u
ally does not convey interesting information, and it is desir
to apply a digital filter to enhance the signal-to-noise ratio.
filter should conserve the value ofPr

(d)(0), since this is pro-
ortional to the number of nuclei, but it may alter the effec
alue ofT*2. Consider the Lorentzian convolution that cons

in multiplying the (two channels of the complex) FID sig
f(t) with exp(2t/T*2), 0 , t , tm, creating a “filter output
f o(t). This halves the effective value ofT*2 in the expression fo
the signal power, Eq. [50]. To see the effect on the n
consider the autocorrelationRo(t) of f o(t) when the input i

oisen(t), white from2v c to v c, with an autocorrelation

^n~t!n~t 1 t!& 5 ^n2~t!&
sin~vct!

vct
. [53]

The output autocorrelation function is

Ro
~n!~t! 5 lim

T3`

1

T E
T1

T11T

n~t!n~t 1 t!exp~2~2t 1 t!/T*2!dt

<
1

tm
E

0

tm

n~t!n~t 1 t!exp~2~2t 1 t!/T*2!dt
e

o-

h

le
e

e
s
l

e,

3
1

tm
E

0

tm

exp~22t/T*2!dt. [54]

After Fourier transformation, the noise power in a freque
interval Dv is Po

(n)(v)Dv with

Po
~n!~v! 5

kT

2p

1

tm
E

0

tm

exp~22t/T*2!dt

3 p 21~arctan~vcT*2 2 vT*2!

1 arctan~vcT*2 1 vT*2!!. [55]

For v cT*2 @ 1 and near the center of the spectrum, wh
vT*2 , 1, the noise power is independent of frequency.
signal-to-noise power ratio becomes

~S/N!o 5
pT*2Pr

~d!~0!

6kT
~1 1 exp~22tm/T*2!!. [56]

If the lifetime of the free induction decay signal is de
mined by radiation damping, thenT*2 5 t rad, and a lowerQ

ill give the same signal-to-noise ratio, because of Eq.
lthough it is not of much practical interest, the ultim

S/N) o in this limit of very highhQ is seen to be

~S/N! o
ult 5

p

24

}B0

kT
[57]

and the signal-to-noise ratio in the half-width of the line in
absorption spectrum is proportional toB0/T.
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